![]() |
||||||
El trabajo infinitesimal es el producto escalar del vector fuerza F por el vector desplazamiento dl, tangente a la trayectoria, o sea: ![]() donde dr es el desplazamiento infinitesimal de la carga q en la dirección radial. Para calcular el trabajo total, se integra entre la posición inicial A, distante ![]() De lo anterior se concluye que el trabajo W no depende del camino seguido por la partícula para ir desde la posición A a la posición B. lo cual implica que la fuerza de atracción F, que ejerce la carga Q sobre la carga q es conservativa. La fórmula de la energía potencial es: ![]() Por definición, el nivel cero de energía potencial se ha establecido en el infinito, o sea, si y sólo si Diferencia de Potencial eléctricoConsidérese una carga de prueba positiva ![]() El trabajo Un electronvoltio (eV) es la energía adquirida para un electrón al moverse a través de una diferencia de potencial de 1 V, 1 eV = 1,6x10-19 J. Algunas veces se necesitan unidades mayores de energía, y se usan los kiloelectronvoltios (keV), megaelectronvoltios (MeV) y los gigaelectronvoltios (GeV). (1 keV=103 eV, 1 MeV = 106 eV, y 1 GeV = 109 eV). Aplicando esta definición a la teoría de circuitos y desde un punto de vista más intuitivo, se puede decir que el potencial eléctrico en un punto de un circuito representa la energía que posee cada unidad de carga al paso por dicho punto. Así, si dicha unidad de carga recorre un circuito constituyendóse en corriente eléctrica, ésta irá perdiendo su energía (potencial o voltaje) a medida que atraviesa los diferentes componentes del mismo. Obviamente, la energía perdida por cada unidad de carga se manifestará como trabajo realizado en dicho circuito (calentamiento en una resistencia, luz en una lámpara, movimiento en un motor, etc.). Por el contrario, esta energía perdida se recupera al paso por fuentes generadoras de tensión. Es conveniente distinguir entre potencial eléctrico en un punto (energía por unidad de carga situada en ese punto) y corriente eléctrica (número de cargas que atraviesan dicho punto por segundo). Usualmente se escoge el punto A a una gran distancia (en rigor el infinito) de toda carga y el potencial eléctrico ![]() siendo Obsérvese que la igualdad planteada depende de que se da arbitrariamente el valor cero al potencial También es de hacer notar que según la expresión que define el potencial eléctrico en un punto, el potencial en un punto cercano a una carga positiva aislada es positivo porque debe hacerse trabajo positivo mediante un agente exterior para llevar al punto una carga de prueba (positiva) desde el infinito. Similarmente, el potencial cerca de una carga negativa aislada es negativo porque un agente exterior debe ejercer una fuerza (trabajo negativo en este caso) para sostener a la carga de prueba (positiva) cuando esta (la carga positiva) viene desde el infinito. Por último, el potencial eléctrico queda definido como un escalar porque Tanto Es posible demostrar que las diferencias de potencial son independientes de la trayectoria para el caso especial representado en la figura. Para mayor simplicidad se han escogido los puntos A y B en una recta radial. Una carga de prueba puede trasladarse desde A hacia B siguiendo la trayectoria I sobre una recta radial o la trayectoria II completamente arbitraria. La trayectoria II puede considerarse equivalente a una trayectoria quebrada formada por secciones de arco y secciones radiales alternadas. Puesto que estas secciones se pueden hacer tan pequeñas como se desee, la trayectoria quebrada puede aproximarse a la trayectoria II tanto como se quiera. En la trayectoria II el agente externo hace trabajo solamente a lo largo de las secciones radiales, porque a lo largo de los arcos, la fuerza Aun cuando esta prueba sólo es válida para el caso especial ilustrado en la figura, la diferencia de potencial es independiente de la trayectoria para dos puntos cualesquiera en cualquier campo eléctrico. Se desprende de ello el carácter conservativo de la interacción electrostática el cual está asociado a la naturaleza central de las fuerzas electrostáticas. Para un par de placas paralelas en las cuales se cumple que Cálculo del potencial eléctrico en diferentes configuraciones
Ejemplo 1. Potencial debido a dos cargas puntuales. Una carga puntual de 5µ C se coloca en el origen y una segunda carga puntual de -2µ C se localiza sobre el eje x en la posición (3,0) m, como en la figura 2.1. a) si se toma como potencial cero en el infinito, determine el potencial eléctrico total debido a estas cargas en el punto P, cuyas coordenadas son (0,4)m. http://sistemas.itlp.edu.mx/tutoriales/electymagnet/imagen18.gif http://sistemas.itlp.edu.mx/tutoriales/electymagnet/imagen18.gif Fig. 2.1. El potencial eléctrico en el punto P debido a las dos cargas puntuales q1 y q2 es la suma algebraica de los potenciales debidos a cada carga individual.
Ejemplo 2. Potencial debido a un anillo uniformemente cargado. Encuentre el potencial eléctrico en un punto P localizado sobre el eje de un anillo uniformemente cargado de radio y carga total Q. El plano del anillo se elige perpendicular al eje x. (Figura 2.2.) http://sistemas.itlp.edu.mx/tutoriales/electymagnet/imagen19.gif Fig. 2.2. Un anillo uniformemente cargado de radio a, cuyo plano es perpendicular al eje x. Todos los segmentos del anillo están a la misma distancia del punto axial P. Considere que el punto P está a una distancia x del centro del anillo, como en la figura 2.2. El elemento de carga dq está a una distancia del punto P. Por lo tanto, se puede expresar V como http://sistemas.itlp.edu.mx/tutoriales/electymagnet/imagen21.gif En este caso, cada elemento dq está a la misma distancia del punto P. Por lo que el término puede sacarse de la integral y V se reduce a http://sistemas.itlp.edu.mx/tutoriales/electymagnet/imagen22.gif En esta expresión V sólo varía con x. Esto no es de extrañarse, ya que nuestro cálculo sólo es valido para puntos sobre el eje x, donde "y" y "z" son cero. De la simetría de la situación, se ve que a lo largo del eje x, E sólo puede tener componente en x. Por lo tanto, podemos utilizar la expresión Ex=-dV/dx. http://sistemas.itlp.edu.mx/tutoriales/electymagnet/imagen23.gif Este resultado es igual al obtenido por integración directa. Note que Ex=0 (el centro del anillo). [1] Campo eléctrico no uniformeEn el caso más general de un campo eléctrico no uniforme, este ejerce una fuerza Si el agente externo hace que el cuerpo de prueba se mueva siguiendo un corrimiento ![]() Como ![]() Si se toma el punto A infinitamente alejado, y si el potencial ![]() Estas dos ecuaciones permiten calcular la diferencia de potencial entre dos puntos cualesquiera si se conoce Definición matemáticaEl potencial eléctrico suele definirse a través del campo eléctrico a partir del teorema del trabajo de la física. ![]() donde E es el "Campo eléctrico" vectorial generado por una distribución de carga eléctrica. Esta definición muestra que estrictamente el potencial eléctrico no está definido sino tan sólo sus variaciones entre puntos del espacio. Por lo tanto, en condiciones de campo eléctrico nulo el potencial asociado es constante. Suele considerarse sin embargo que el potencial eléctrico en un punto infinitamente alejado de las cargas eléctricas es cero por lo que la ecuación anterior puede escribirse: ![]() En términos de energía potencial el potencial en un punto r es igual a la energía potencial entre la carga Q: ![]() El potencial, según Coulomb eléctrico también puede calcularse a partir de la definición de energía potencial de una distribución de cargas: ![]()
|
![]() |
Universidad de la Guajira